F2NM

Type N Male for 3/8 in FSJ2-50 cable

OBSOLETE

This product was discontinued on: October 30, 2016

Replaced By:

F2SM-DCM Type S Male Positive Lock for 3/8 in FSJ2-50 cable

F2TNM-PL Type N Male Positive Lock for 3/8 in FSJ2-50 cable

Product Classification

Product Type Wireless and radiating connector

Product Brand HELIAX®

General Specifications

Body Style Straight

Cable Family FSJ2-50

Inner Contact Attachment Method Solder

Inner Contact Plating Silver

Interface N Male

Mounting Angle Straight

Outer Contact Attachment Method Self-flare

Outer Contact Plating Copper alloy treatment

Pressurizable No

Dimensions

 Height
 20.57 mm
 | 0.81 in

 Width
 20.57 mm
 | 0.81 in

 Length
 52.32 mm
 | 2.06 in

Nominal Size 3/8 in

Electrical Specifications

3rd Order IMD at Frequency-112 dBm @ 910 MHz **3rd Order IMD Test Method**Two +43 dBm carriers

COMMSCOPE®

F2NM

Average Power at Frequency 0.7 kW @ 900 MHz

Cable Impedance50 ohmConnector Impedance50 ohmdc Test Voltage2300 VInner Contact Resistance, maximum1 mOhmInsulation Resistance, minimum5000 MOhmOperating Frequency Band0 - 6000 MHzOuter Contact Resistance, maximum0.25 mOhm

Peak Power, maximum0.68 kWRF Operating Voltage, maximum (vrms)707 VShielding Effectiveness-110 dB

Mechanical Specifications

Connector Retention Tensile Force671.68 N | 151 lbfConnector Retention Torque2.7 N-m | 23.897 in lbCoupling Nut Proof Torque1.7 N-m | 15.046 in lbCoupling Nut Proof Torque MethodIEC 61169-16:9.3.11Coupling Nut Retention Force445 N | 100.04 lbfCoupling Nut Retention Force MethodIEC 61169-16:9.3.11

Insertion Force Method

124.55 N | 28 lbf

IEC 61169-16:9.3.5

Interface Durability500 cyclesInterface Durability MethodIEC 61169-4:17Mechanical Shock Test MethodIEC 60068-2-27

Environmental Specifications

Operating Temperature $-55 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$ (-67 $^{\circ}\text{F}$ to $+185 \,^{\circ}\text{F}$)Storage Temperature $-65 \,^{\circ}\text{C}$ to $+125 \,^{\circ}\text{C}$ (-85 $^{\circ}\text{F}$ to $+257 \,^{\circ}\text{F}$)

Attenuation, Ambient Temperature20 °C | 68 °FAverage Power, Ambient Temperature40 °C | 104 °FAverage Power, Inner Conductor Temperature100 °C | 212 °FCorrosion Test MethodIEC 60068-2-11

Immersion Depth 1 m

COMMSCOPE®

F2NM

Immersion Test Mating Mated

Immersion Test Method IEC 60529:2001, IP68

Moisture Resistance Test MethodIEC 60068-2-3Thermal Shock Test MethodIEC 60068-2-14Vibration Test MethodIEC 60068-2-6

Packaging and Weights

Weight, net 146.81 g | 0.324 lb

Included Products

FSJ2-50, HELIAX® Superflexible Foam Coaxial Cable, corrugated copper, 3/8 in, black PE

jacket

* Footnotes

Immersion Depth Immersion at specified depth for 24 hours

FSJ2-50, HELIAX® Superflexible Foam Coaxial Cable, corrugated copper, 3/8 in, black PE jacket

Product Classification

 Product Type
 Coaxial wireless cable

 Product Brand
 HELIAX® | SureFlex®

Product Series FSJ2-50

General Specifications

Product Number 887019902/00 | SZ887019902/00

Flexibility Superflexible

Jacket Color Black

Performance Note Attenuation values typical, guaranteed within 5%

Dimensions

 Diameter Over Dielectric
 7.112 mm | 0.28 in

 Diameter Over Jacket
 10.541 mm | 0.415 in

 Inner Conductor OD
 2.794 mm | 0.11 in

 Outer Conductor OD
 9.652 mm | 0.38 in

Nominal Size 3/8 in

Electrical Specifications

Cable Impedance50 ohm ±1 ohm

Capacitance 79.7 pF/m | 24.293 pF/ft

dc Resistance, Inner Conductor4.232 ohms/km | 1.29 ohms/kftdc Resistance, Outer Conductor4.987 ohms/km | 1.52 ohms/kft

dc Test Voltage 2300 V

Inductance $0.2 \mu H/m \mid 0.061 \mu H/ft$

Insulation Resistance 100000 MOhms-km

COMMSCOPE®

Jacket Spark Test Voltage (rms) 4000 V

Operating Frequency Band 1 – 13400 MHz

 Peak Power
 13.2 kW

 Velocity
 83 %

VSWR/Return Loss

Frequency Band	VSWR	Return Loss (dB)
2.5-2.7 GHz	1.106	25.96
680-800 MHz	1.106	25.96
800-960 MHz	1.106	25.96
1700-2200 MHz	1.101	26.36

Attenuation

Frequency (MHz) At	ttenuation (dB/100 m)	Attenuation (dB/100 ft)	Average Power (kW)
1.0 0.3	383	0.117	13.2
1.5 0.4	469	0.143	13.2
2.0 0.5	542	0.165	13.2
10.0 1.2	219	0.372	6.97
20.0 1.7	732	0.528	4.91
30.0 2.1	128	0.649	3.99
50.0 2.7	762	0.842	3.08
85.0 3.6	626	1.105	2.34
88.0 3.6	691	1.125	2.3
100.0 3.9	943	1.202	2.16
108.0 4.1	103	1.25	2.07
150.0 4.8	864	1.482	1.75
174.0 5.2	254	1.601	1.62
200.0 5.6	65	1.722	1.5
204.0 5.7	709	1.74	1.49
300.0 6.9	99	2.13	1.22
400.0 8.1	139	2.481	1.04
450.0 8.6	665	2.641	0.98
460.0 8.7	767	2.672	0.97
500.0 9.1	166	2.794	0.93
512.0 9.2	283	2.829	0.92

Page 5 of 8

600.0	10.107	3.081	0.84
700.0	10.983	3.347	0.77
800.0	11.807	3.599	0.72
824.0	11.998	3.657	0.71
894.0	12.542	3.823	0.68
960.0	13.04	3.974	0.65
1000.0	13.334	4.064	0.64
1218.0	14.861	4.529	0.57
1250.0	15.075	4.595	0.56
1500.0	16.68	5.084	0.51
1700.0	17.887	5.452	0.48
1794.0	18.436	5.619	0.46
1800.0	18.47	5.629	0.46
2000.0	19.599	5.974	0.43
2100.0	20.147	6.141	0.42
2200.0	20.685	6.305	0.41
2300.0	21.214	6.466	0.4
2500.0	22.247	6.781	0.38
2700.0	23.249	7.086	0.37
3000.0	24.701	7.529	0.34
3400.0	26.558	8.094	0.32
3600.0	27.456	8.368	0.31
3700.0	27.899	8.503	0.3
3800.0	28.337	8.637	0.3
3900.0	28.771	8.769	0.3
4000.0	29.201	8.9	0.29
4100.0	29.628	9.03	0.29
4200.0	30.051	9.159	0.28
4300.0	30.47	9.287	0.28
4400.0	30.886	9.414	0.28
4500.0	31.298	9.539	0.27
4600.0	31.708	9.664	0.27
4700.0	32.114	9.788	0.26
4800.0	32.518	9.911	0.26
4900.0	32.919	10.033	0.26

Page 6 of 8

5000.0	33.316	10.154	0.26
6000.0	37.158	11.325	0.23
8000.0	44.264	13.491	0.19
8800.0	46.943	14.308	0.18
10000.0	50.826	15.491	0.17
12000.0	57.001	17.373	0.15

Material Specifications

Dielectric Material Foam PE

Jacket Material PE

Inner Conductor Material Copper-clad aluminum wire

Outer Conductor Material Corrugated copper

Mechanical Specifications

Minimum Bend Radius, multiple Bends25.4 mm | 1 inMinimum Bend Radius, single Bend25.4 mm | 1 in

Number of Bends, minimum 20 Number of Bends, typical 50

 Tensile Strength
 95 kg | 209.439 lb

 Bending Moment
 2.3 N-m | 20.357 in lb

Flat Plate Crush Strength 1.8 kg/mm | 100.795 lb/in

Environmental Specifications

Installation temperature $-40 \,^{\circ}\text{C to} +60 \,^{\circ}\text{C (}-40 \,^{\circ}\text{F to} +140 \,^{\circ}\text{F)}$ Operating Temperature $-55 \,^{\circ}\text{C to} +85 \,^{\circ}\text{C (}-67 \,^{\circ}\text{F to} +185 \,^{\circ}\text{F)}$ Storage Temperature $-70 \,^{\circ}\text{C to} +85 \,^{\circ}\text{C (}-94 \,^{\circ}\text{F to} +185 \,^{\circ}\text{F)}$

Attenuation, Ambient Temperature68 °F | 20 °CAverage Power, Ambient Temperature104 °F | 40 °CAverage Power, Inner Conductor Temperature212 °F | 100 °C

Packaging and Weights

Cable weight 0.12 kg/m | 0.081 lb/ft

Regulatory Compliance/Certifications

Agency

Classification

CHINA-ROHS Below maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

ROHS Compliant UK-ROHS Compliant

